Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fabrication and characterization of a porous multidomain hydroxyapatite scaffold for bone tissue engineering investigations

Identifieur interne : 000716 ( Main/Exploration ); précédent : 000715; suivant : 000717

Fabrication and characterization of a porous multidomain hydroxyapatite scaffold for bone tissue engineering investigations

Auteurs : Conor Timothy Buckley [Irlande (pays)] ; Kevin Unai O'Kelly [Irlande (pays)]

Source :

RBID : ISTEX:96BA26C72854A2C65EF090C58FB17CDF9EF2D8F6

English descriptors

Abstract

Tissue‐engineering scaffold‐based strategies have suffered from limited cell depth viability when cultured in vitro, with viable cells existing within the outer periphery of the fluid–scaffold interface. This is primarily believed to be due to the lack of nutrient delivery into and waste removal from the inner regions of the scaffold construct. This work develops a hydroxyapatite trimodal porous scaffold architecture (i.e., a scaffold providing a discrete domain for cell occupancy and a separate domain for nutrient delivery) through a freeze drying process. Unidirectional channels (500 μm diameter) were incorporated through CNC machining with total combined apparent porosities of 85.1% ± 0.22%. Effective diffusion coefficients for the bimodal phase (consisting of micro‐ and meso‐pores, without channels) were also determined (7.9 × 10−10 m2 s−1). Trimodal scaffolds also demonstrated enhanced permeability values (∼18‐fold increase) compared with bimodal scaffold architectures. In vitro experiments were used to assess initial seeding efficiency and distribution as well as cell viability. The presence of unidirectional channels significantly enhanced initial cell seeding distribution throughout the scaffold depth, while maintaining relatively high seeding efficiencies (67.7% ± 2.2% for trimodal, 79.1% ± 2.1% for bimodal scaffolds). Numerical models demonstrated the effectiveness and efficacy of incorporating channels to increase the core oxygen concentration, with the accuracy of these models improved by using experimentally measured cellular oxygen consumption rates and effective diffusion coefficients. The presence of channels had a positive influence in minimizing the concentration gradients compared with bimodal scaffolds for the same cell density distributions. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010

Url:
DOI: 10.1002/jbm.b.31603


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fabrication and characterization of a porous multidomain hydroxyapatite scaffold for bone tissue engineering investigations</title>
<author>
<name sortKey="Buckley, Conor Timothy" sort="Buckley, Conor Timothy" uniqKey="Buckley C" first="Conor Timothy" last="Buckley">Conor Timothy Buckley</name>
</author>
<author>
<name sortKey="O Kelly, Kevin Unai" sort="O Kelly, Kevin Unai" uniqKey="O Kelly K" first="Kevin Unai" last="O'Kelly">Kevin Unai O'Kelly</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:96BA26C72854A2C65EF090C58FB17CDF9EF2D8F6</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/jbm.b.31603</idno>
<idno type="url">https://api.istex.fr/document/96BA26C72854A2C65EF090C58FB17CDF9EF2D8F6/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001C21</idno>
<idno type="wicri:Area/Istex/Curation">001B07</idno>
<idno type="wicri:Area/Istex/Checkpoint">000296</idno>
<idno type="wicri:doubleKey">1552-4973:2010:Buckley C:fabrication:and:characterization</idno>
<idno type="wicri:Area/Main/Merge">000721</idno>
<idno type="wicri:Area/Main/Curation">000716</idno>
<idno type="wicri:Area/Main/Exploration">000716</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Fabrication and characterization of a porous multidomain hydroxyapatite scaffold for bone tissue engineering investigations</title>
<author>
<name sortKey="Buckley, Conor Timothy" sort="Buckley, Conor Timothy" uniqKey="Buckley C" first="Conor Timothy" last="Buckley">Conor Timothy Buckley</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Department of Mechanical Engineering, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin</wicri:regionArea>
<wicri:noRegion>Dublin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="O Kelly, Kevin Unai" sort="O Kelly, Kevin Unai" uniqKey="O Kelly K" first="Kevin Unai" last="O'Kelly">Kevin Unai O'Kelly</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Department of Mechanical Engineering, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin</wicri:regionArea>
<wicri:noRegion>Dublin</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title level="j" type="abbrev">J. Biomed. Mater. Res.</title>
<idno type="ISSN">1552-4973</idno>
<idno type="eISSN">1552-4981</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2010-05">2010-05</date>
<biblScope unit="volume">93B</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="459">459</biblScope>
<biblScope unit="page" to="467">467</biblScope>
</imprint>
<idno type="ISSN">1552-4973</idno>
</series>
<idno type="istex">96BA26C72854A2C65EF090C58FB17CDF9EF2D8F6</idno>
<idno type="DOI">10.1002/jbm.b.31603</idno>
<idno type="ArticleID">JBM31603</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1552-4973</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>bone tissue engineering</term>
<term>cell seeding</term>
<term>diffusion</term>
<term>hydroxyapatite</term>
<term>oxygen consumption</term>
<term>scaffold</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tissue‐engineering scaffold‐based strategies have suffered from limited cell depth viability when cultured in vitro, with viable cells existing within the outer periphery of the fluid–scaffold interface. This is primarily believed to be due to the lack of nutrient delivery into and waste removal from the inner regions of the scaffold construct. This work develops a hydroxyapatite trimodal porous scaffold architecture (i.e., a scaffold providing a discrete domain for cell occupancy and a separate domain for nutrient delivery) through a freeze drying process. Unidirectional channels (500 μm diameter) were incorporated through CNC machining with total combined apparent porosities of 85.1% ± 0.22%. Effective diffusion coefficients for the bimodal phase (consisting of micro‐ and meso‐pores, without channels) were also determined (7.9 × 10−10 m2 s−1). Trimodal scaffolds also demonstrated enhanced permeability values (∼18‐fold increase) compared with bimodal scaffold architectures. In vitro experiments were used to assess initial seeding efficiency and distribution as well as cell viability. The presence of unidirectional channels significantly enhanced initial cell seeding distribution throughout the scaffold depth, while maintaining relatively high seeding efficiencies (67.7% ± 2.2% for trimodal, 79.1% ± 2.1% for bimodal scaffolds). Numerical models demonstrated the effectiveness and efficacy of incorporating channels to increase the core oxygen concentration, with the accuracy of these models improved by using experimentally measured cellular oxygen consumption rates and effective diffusion coefficients. The presence of channels had a positive influence in minimizing the concentration gradients compared with bimodal scaffolds for the same cell density distributions. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Irlande (pays)</li>
</country>
</list>
<tree>
<country name="Irlande (pays)">
<noRegion>
<name sortKey="Buckley, Conor Timothy" sort="Buckley, Conor Timothy" uniqKey="Buckley C" first="Conor Timothy" last="Buckley">Conor Timothy Buckley</name>
</noRegion>
<name sortKey="O Kelly, Kevin Unai" sort="O Kelly, Kevin Unai" uniqKey="O Kelly K" first="Kevin Unai" last="O'Kelly">Kevin Unai O'Kelly</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000716 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000716 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:96BA26C72854A2C65EF090C58FB17CDF9EF2D8F6
   |texte=   Fabrication and characterization of a porous multidomain hydroxyapatite scaffold for bone tissue engineering investigations
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024